Skip to main content

12 Steps to Zero Trust Success

A Google search for “zero trust” returns ~ 195Million results.  Pretty sure some are not necessarily related to access management and cyber security, but a few probably are.  Zero Trust was a term coined by analyst group Forrester back in 2010 and has gained popularity since Google started using the concept with their employee management project called BeyondCorp.

It was originally focused on network segmentation but has now come to include other aspects of user focused security management.

Below is a hybrid set of concepts that tries to cover all the current approaches.  Please comment below so we can iterate and add more to this over time.

  1. Assign unique, non-reusable identifiers to all subjects [1], objects [2] and network devices [3]
  2. Authenticate every subject
  3. Authenticate every device
  4. Inspect, verify and validate every object access request
  5. Log every object access request
  6. Authentication should contain 2 of something you have, something you are, something you know
  7. Successful authentication should result in a revocable credential [4]
  8. Credentials should be scoped and follow least privilege [5]
  9. Credentials should be bound to a user, device, transaction tuple [6]
  10. Network communications should be encrypted [7]
  11. Assume all services, API’s and applications are accessible from the Internet [8]
  12. Segment processes and network traffic in logical and operational groups

[1] – Users of systems, including employees, partners, customers and other user-interactive service accounts
[2] – API’s, services, web applications and unique data sources
[3] – User devices (such as laptops, mobiles, tablets, virtual machines), service devices (such as printers, faxes) and network management devices (such as switches, routers)
[4] – Such as a cookie, tokenId or access token which is cryptographically secure.  Revocable shouldn't necessarily be limited to being time bound. Eg revocation/black lists etc.
[5] – Credential exchange may be required where access traverses network or object segmentation.  For example an issued credential for subject 1 to access object 1, may require object 1 to contact object 2 to fulfil the request.  The credential presented to object 2 may differ to that presented to object 1.
[6] – Token binding approach such as signature based access tokens or TLS binding
[7] – Using for example standards based protocols such as TLS 1.3 or similar. Eg Google's ALTS.
[8] – Assume perimeter based networking (either software defined or network defined) is incomplete and trust cannot be placed simply on the origin of a request

The below is a list of companies referencing “zero trust” public documentation:

  • Akamai -
  • Palo Alto -
  • Centrify -
  • Cisco -
  • Microsoft -
  • ScaleFT -
  • zscaler -
  • Okta -
  • ForgeRock  -
  • Duo Security -
  • Google’s Beyond Corp -
  • Fortinet -

Popular posts from this blog

2020: Machine Learning, Post Quantum Crypto & Zero Trust

Welcome to a digital identity project in 2020! You'll be expected to have a plan for post-quantum cryptography.  Your network will be littered with "zero trust" buzz words, that will make you suspect everyone, everything and every transaction.  Add to that, “machines” will be learning everything, from how you like your coffee, through to every network, authentication and authorisation decision. OK, are you ready?

Machine Learning I'm not going to do an entire blog on machine learning (ML) and artificial intelligence (AI).  Firstly I'm not qualified enough on the topic and secondly I want to focus on the security implications.  Needless to say, within 3 years, most organisations will have relatively experienced teams who are handling big data capture from an and identity, access management and network perspective.

That data will be being fed into ML platforms, either on-premise, or via cloud services.  Leveraging either structured or unstructured learning, data fr…

Customer Data: Convenience versus Security

Organisations in both the public and private sector are initiating programmes of work to convert previously physical or offline services, into more digital, on line and automated offerings.  This could include things like automated car tax purchase, through to insurance policy management and electricity meter reading submission and reporting.

Digitization versus Security

This move towards a more on line user experience, brings together several differing forces.  Firstly the driver for end user convenience and service improvement, against the requirements of data security and privacy.  Which should win?  There clearly needs to be a balance of security against service improvement.  Excessive and prohibitive security controls would result in a complex and often poor user experience, ultimately resulting in fewer users.  On the other hand, poorly defined security architectures, lead to data loss, with the impact for personal exposure and brand damage.

Top 5 Security Predictions for 2016

It's that time of year again, when the retrospective and predictive blogs come out of the closet, just before the Christmas festivities begin.  This time last year, the 2015 predictions were an interesting selection of both consumer and enterprise challenges, with a focus on:

Customer Identity ManagementThe start of IoT security awarenessReduced Passwords on MobileConsumer PrivacyCloud Single Sign On
In retrospect, a pretty accurate and ongoing list.  Consumer related identity (cIAM) is hot on most organisation's lips, and whilst the password hasn't died (and probably never will) there are more people using things like swipe login and finger print authentication than ever before.

But what will 2016 bring?

Mobile Payments to be Default for Consumers

2015 has seen the rise in things like Apple Pay and Samsung Pay hitting the consumer high street with venom.  Many retail outlets now provide the ability to "tap and pay" using a mobile device, with many banks also offer…